# Scripting the Hypergeometrical Standard Model

I ended up finding easier to do everything in Python than in Mathematica.  Here is the initial script.  I will expand it every so often.  This script is always in Github.  Follow the collaborate link in the menu.

Here I am creating the different parts of the coherence (Fundamental Dilator).  Once the Fundamental Dilator is created, it should be a simple matter to create the Hyperons.  Once the graphical respresentation of this theory is easier on the eyes than the Balls Diagram, people should start to understand..:)

Of course, everything I am plotting here, I stated clearly in words throughout the theory.

Cheers,

MP

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from itertools import cycle

# ATOM
#
# Smallest particle of an element which shows all properties of element is called atom.
# Some characteristics of "atoms" are as follows:
# Atom takes part in chemical reactions independently.
# Atom can be divided into a number of sub-atomic particles.
# Fundamental particles of atom are electron, proton and neutron.
# CHARACTERISTICS OF ELECTRON
#
# Charge: It is a negatively charged particle.
# Magnitutide of charge: Charge of electron is 1.6022 x 10-19 Coulomb.
# Mass of electron: Mass of electron is 0.000548597 a.m.u. or 9.1 x 10-31 kg.
# Symbol of electron: Electron is represented by "e".
# Location in the atom: Electrons revolve around the nucleus of atom in different circular orbits.
# CHARACTERISTICS OF PROTON
#
# Charge: Proton is a positively charged particle.
# Magnitude of charge: Charge of proton is 1.6022 x 10-19 coulomb.
# Mass of proton: Mass of proton is 1.0072766 a.m.u. or 1.6726 x 10-27 kg.
# Comparative mass: Proton is 1837 times heavier than an electron.
# Position in atom: Protons are present in the nucleus of atom.
# For latest information , free computer courses and high impact notes visit : www.citycollegiate.com
# CHARACTERISTICS OF NEUTRON
#
# charge: It is a neutral particle because it has no charge.
# Mass of neutron: . Mass of neutron is 1.0086654 a.m.u. or 1.6749 x 10-27 kg.
# Compartive mass: Neutron is 1842 times heavier than an electron.
# Location in the atom: Neutrons are present in the nucleus of an atom.

# Proton Charge=-Electron Charge = 1.6022 x 10-19 Coulomb
# Proton Mass = 1837 Electron Mass

# These are the thicknesses along the radial direction (Fourth Dimensional direction perpendicular to our
# 3D Universe (LightSpeed Expanding Hypersperical Universe).
# The total 4D volume should be identical.

def swap_cols(arr, frm, to):
arr[:,[frm, to]] = arr[:,[to, frm]]
return arr

def swap_rows(arr, frm, to):
arr[[frm, to], :] = arr[[to, frm], :]
return arr

def getSpin(axis=None):
spin = np.identity(4)
if axis is None:
return spin
spin=swap_cols(spin, axis,3)
return spin

def getDilatorSequence(particle=0, axis=0, spin='half'):
hp = 1e-9
he = hp * 1837
ident = np.identity(4)
rotate = getSpin(axis=axis)
rotationMatrix = [ident,rotate,ident,rotate]
# Particle Definition
protonCoeff = np.array([2/3, 2/3, -1/3,hp]).T
electronCoeff = np.array([0,-2/3,-1/3,he]).T
positronCoeff = np.array([0,2/3,1/3,-he]).T
antiprotonCoeff = np.array([-2/3, -2/3, 1/3,-hp]).T
if(spin=='half'):
listA = [protonCoeff, electronCoeff,antiprotonCoeff, positronCoeff,protonCoeff, electronCoeff,antiprotonCoeff, positronCoeff]
else:
listA=[protonCoeff,positronCoeff ,antiprotonCoeff, electronCoeff,protonCoeff,positronCoeff ,antiprotonCoeff,electronCoeff ]
listA = listA[particle:(particle+4)]
dilatorSequence = [np.dot(rotationMatrix[i],listA[i]) for i in np.arange(4)]
A = [x[0:3] for x in dilatorSequence]
return A

# The actual amplitude of the metric distorsion is not know. Considering that it is very, very small
# the metric displacement will be approximated by the sum of the 3D coefficients times the radial thickness
# hp is unknown
class dilator(object):
def __init__(self,particle,axis,spin,ax,position=[0,0]):
self.unit = {}
self.ax=ax
self.particle=particle
self.dilatorSeq=getDilatorSequence(particle=particle, axis=axis, spin=spin)
self.axis=axis
self.center = [position + [i*np.pi/2 ]for i in np.arange(5)]
self.spin=spin
def plotMe(self):
i=0
for t in self.dilatorSeq:
self.unit[i]=unit(t,self.ax,self.center[i]).plotMe(ax)
i=i+1
plt.show()

# Radii corresponding to the coefficients:
class unit(object):
def __init__(self,coeffs,ax,center=(0,0)):
self.ax = ax
self.coeffs=coeffs
self.charge=np.sum(coeffs)
print(self.charge)
self.center=center
# Scaling factor
a=2
self.rx, self.ry, self.rz = [(e/a+1.0) for e in coeffs]
# Set of all spherical angles:
self.u = np.linspace(0, 2 * np.pi, 100)
self.v = np.linspace(0, np.pi, 100)
def surface(self,center=(0,0,0)):
# Cartesian coordinates that correspond to the spherical angles:
# (this is the equation of an ellipsoid):
u=self.u
v=self.v
x = (self.rx-1) * np.outer(np.cos(u), np.sin(v))+self.center[0]
y = (self.ry-1) * np.outer(np.sin(u), np.sin(v))+self.center[1]
z = (self.rz-1) * np.outer(np.ones_like(u), np.cos(v))+self.center[2]
return x,y,z
def plotMe(self,ax):
# Plot:
x,y,z = self.surface()
color='g'
if(self.charge<0):
color='r'
self.ax.plot_surface(x, y, z, rstride=4, cstride=4, color=color)

if(__name__=='__main__'):
# for spin in ['half', 'minus-half']:
# print('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Spin= ',spin)
# for particle in np.arange(4):
# print('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Particle=', particle)
# for axis in np.arange(3):
# print('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Axis=', axis)
# A = getDilatorSequence(particle=particle, axis=axis, spin=spin)
# print(' spin = ', spin, ' particle = ', particle, ' axis = ', axis)
# for t in A:
# print(t)
# print('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx')

fig = plt.figure(figsize=plt.figaspect(1))
# Square figure
getattr(ax, 'set_{}lim'.format('x'))((-np.pi / 4, np.pi / 4))
getattr(ax, 'set_{}lim'.format('y'))((-np.pi / 4, np.pi / 4))
getattr(ax, 'set_{}lim'.format('z'))((-np.pi / 4, 2.25 * np.pi))
proton = dilator(particle=0,axis=0,ax=ax,spin='half',position=[0,0])
proton.plotMe()
a=1

Currently unrated

or